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The Finite Element Method (FEM) in Fluid Mechanics
Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

Flexibility in handling complex geometries.
Ability to handle different forms of
boundary conditions.

FEM is quasi-optimal for elliptic
(diffusion-dominated) PDEs: assures good
performance of the computation at any mesh
resolution.

However:
coarse mesh accuracy is not guaranteed
when the flow is advection-dominated!

Significant mesh refinement typically
needed to capture boundary layer region

EXPENSIVE!

Goal: build an efficient method that can accurately capture boundary layers.
Approach: start with simple canonical equation; then generalize.
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2D Scalar Advection-Diffusion Equation

Lc = −κ∆c︸ ︷︷ ︸
diffusion

+ a · ∇c︸ ︷︷ ︸
advection

= f

Advection velocity:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ = diffusivity.

Describes many transport phenomena in fluid mechanics:
Heat transfer.
Semi-conductor device modeling.
Usual scalar model for the more challenging Navier-Stokes
equations.

Global Péclet number (L = length scale associated with Ω):

Pe =
rate of advection
rate of diffusion

=
L|a|
κ

= Re ·
{

Pr (thermal diffusion)
Sc (mass diffusion)
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Advection-Dominated Regime

Typical applications: flow is
advection-dominated.

Figure 1: Galerkin Q1 solution
(color) vs. exact solution (black) for
Pe = 150

Some classical remedies:

Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.
RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.
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The Discontinuous Enrichment Method (DEM)

Idea of DEM:

“Enrich” the usual Galerkin polynomial field VP by the free-space solutions to
the governing homogeneous PDE Lc = 0.

ch = cP + cE ∈ VP ⊕ (VE\VP)

where
VE = span{c : Lc = 0}

Simple 1D Example:{
ux − uxx = 1 + x , x ∈ (0, 1)
u(0) = 0, u(1) = 1

Enrichments: uE
x − uE

xx = 0⇒ uE = C1 + C2ex ⇒
VE = span{1, ex}.
Galerkin FEM polynomials: VP

Ωe=(xj ,xj+1) = span
{

xj+1−x
h ,

x−xj
h

}
.
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History of DEM’s Success

Acoustic scattering problems (Helmholtz equation) [4,5].

First developed by Farhat et. al in 2000 for the Helmholtz equation.
A family of 3D hexahedral DEM elements for medium frequency
problems achieved the same solution accuracy as Galerkin
elements of comparable convergence order using 4–8 times fewer
dofs, and up to 60 times less CPU time [4].
Numerically scalable domain decomposition-based iterative solver
for 2D and 3D acoustic scattering problems in medium- and high-
frequency regimes has been developed [5].

Wave propagation in elastic media (Navier’s equation) [6].

Fluid-structure interaction problems (Navier’s equation and the
Helmholtz equation) [7, 8].

Excellent performance motivates
development of DEM for other applications

→ Fluid Mechanics
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Two Variants of DEM

Two variants of DEM: “pure DGM” vs. “true DEM”

DGM DEM

Vh VE VP ⊕ (VE\VP)

ch cE cP + cE

Enrichment-Only “Pure DGM”:
Contribution of the standard
polynomial field is dropped

entirely from the approximation.

True or “Full” DEM:
Splitting of the approximation
into coarse (polynomial) and

fine (enrichment) scales.

Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries

⇒ DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers
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What about Inter-Element Continuity?

Continuity across element boundaries is enforced weakly using
Lagrange multipliers λh ∈ Wh:

λh ≈ ∇cE
e · ne = −∇cE

e′ · ne′ on Γe,e′

but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition1:{
# Lagrange multiplier
constraint equations ≤ # enrichment

equations

}

Rule of thumb to satisfy the Babuška-Brezzi inf-sup condition is to limit:

nλ =

⌊
nE

4

⌋
≡ max

{
n ∈ Z|n ≤ nE

4

}
nλ = # Lagrange multipliers per edge
nE = # enrichment functions

1Necessary condition for generating a non-singular global discrete problem.
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Hybrid Variational Formulation of DEM

Strong form:

(S) :


Find c ∈ H1(Ω) such that
−κ∆c + a · ∇c = f , in Ω

c = g, on Γ = ∂Ω
ce − ce′

Weak hybrid variational form:

(W ) :


Find (c, λ) ∈ V ×W such that:

a(v , c) + b(λ, v) = r(v)

b(µ, c) = −rd (µ)

holds ∀c ∈ V, ∀µ ∈ W.

where

a(v , c) = (κ∇v + va,∇c)Ω̃

b(λ, v) =
∑

e

∑
e′<e

∫
Γe,e′ λ(ve′ − ve)dΓ +

∫
Γ
λv dΓ

Ω

Ωe
Γe

Notation:
Ω̃ = ∪nel

e=1Ωe

Γ̃ = ∪nel
e=1Γe

Γe,e′ = Γe ∩ Γe′

Γint = ∪e′<e ∪nel
e=1 {Γ

e ∩ Γe′}
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Discretization & Implementation
Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 cP

cE

λh

 =

 rP

rE

rC



Due to the discontinuous nature of VE , cE can be
eliminated at the element level by a static condensation

Computational
complexity

depends on dimWh

not on dimVE

Statically-condensed True DEM Element:(
k̃PP k̃PC

k̃CP k̃CC

)(
cP

λh

)
=

(
r̃P

r̃C

)

Statically-condensed Pure DGM Element:

−kCE(kEE)−1kECλh = rC − kCE(kEE)−1rE
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Angle-Parametrized Enrichment Functions for 2D
Advection-Diffusion

Derived by solving LcE = a · ∇cE − κ∆cE = 0 analytically (e.g.,
separation of variables).

cE (x; θi ) = e

(
a1+|a| cos θi

2κ

)
(x−xr,i )e

(
a2+|a| sin θi

2κ

)
(y−yr,i ) (1)

aT ≡
(

a1, a2
)

= advection velocity vector

(xr,i , yr,i ) = reference point for cE
i

Θc ≡ {θi}nE

i=1 ∈ [0, 2π) = set of angles specifying VE

The parametrization with respect to θi in (1) is non-trivial!

Enrichment functions are now specified by a set of “flow directions”.

Parametrization enables systematic element design.
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Plots of Enrichment Functions for Some Angles
θi ∈ [0,2π)

φ = 0, θi = 0 φ = 0, θi = π
2 φ = π

2 , θi = 3π
4

φ = 0, θi = π φ = 3π
2 , θi = 5π

4 φ = 0, θi = 3π
2

Figure 2: Plots of enrichment function cE (x; θi ) for several values of θi (Pe = 20)
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What about the Lagrange Multiplier Approximations?

�
�
�
�
�
�

@@R
ne,e′

s

q
q

s = 0

s = hΩe

Ωe′Γe,e′

αe,e′
�
�
�
��

��
Figure 3: Straight edge Γe,e′ oriented at angle αe,e′ ∈ [0, 2π)

Trivial to compute given exponential enrichments:

λh(s)|Γe,e′ ≈ ∇cE · n|Γe,e′

= const · e
{
|a|
2κ

[
cos(φ−αe,e′ )+cos(θk−αe,e′ )

]
(s−se,e′

r )

}

Non-trivial to satisfy inf-sup condition:
the set Θc that defines VE typically leads to

too many Lagrange multiplier dofs!

Irina Kalashnikova∗ Ph.D. Candidate Institute for Computational & Mathematical Engineering (iCME) Stanford UniversityDEM for Multi-Scale Transport Problems 18/ 52



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for Constant-Coefficient Advection-Diffusion DEM for Variable-Coefficient Advection-Diffusion Extension of DEM to Unsteady, Non-Linear Problems SummaryEnrichment Bases Lagrange Multiplier Approximations Element Design Numerical Experiments

What about the Lagrange Multiplier Approximations?

�
�
�
�
�
�

@@R
ne,e′

s

q
q

s = 0

s = hΩe

Ωe′Γe,e′

αe,e′
�
�
�
��

��
Figure 3: Straight edge Γe,e′ oriented at angle αe,e′ ∈ [0, 2π)

Trivial to compute given exponential enrichments:

λh(s)|Γe,e′ ≈ ∇cE · n|Γe,e′

= const · e
{
|a|
2κ

[
cos(φ−αe,e′ )+cos(θk−αe,e′ )

]
(s−se,e′

r )

}

Non-trivial to satisfy inf-sup condition:
the set Θc that defines VE typically leads to

too many Lagrange multiplier dofs!

Irina Kalashnikova∗ Ph.D. Candidate Institute for Computational & Mathematical Engineering (iCME) Stanford UniversityDEM for Multi-Scale Transport Problems 18/ 52



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for Constant-Coefficient Advection-Diffusion DEM for Variable-Coefficient Advection-Diffusion Extension of DEM to Unsteady, Non-Linear Problems SummaryEnrichment Bases Lagrange Multiplier Approximations Element Design Numerical Experiments

Lagrange Multiplier Selection

q q q q× × ××
Λe,e′

min Λe,e′
max

Λe,e′

2 Λe,e′

3Λe,e′

1 Λe,e′

4

Illustration of Lagrange Multiplier selection for nλ = 4

Define:
Λe,e′

i ≡ |a|
2κ

[
cos(φ− αe,e′) + cos(θk − αe,e′)

]
⇓

λh|Γe,e′ = span
{

eΛ
e,e′
i (s−se,e′

r,i )
, 0 ≤ s ≤ h

}

Determine # Lagrange multipliers allowed: card{Λe,e′

i } =
⌊

nE

4

⌋
.

Sample Λe,e′

i uniformly in the interval [Λe,e′

min ,Λ
e,e′
max ] to span space of all

exponentials of the form {eΛ
e,e′
i s : Λe,e′

min ≤ Λe,e′

i ≤ Λe,e′
max}.
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Mesh Independent Element Design Procedure

Algorithm 1. “Build Your Own DEM Element”

Fix nE ∈ N (the desired number of angles defining VE ).

Select a set of nE distinct angles Θc = {θk}nE
k=1 between [0, 2π).

Define the enrichment functions by:

cE (x; Θc) = e

(
a1+|a| cos Θc

2κ

)
(x−xr,i )

e

(
a2+|a| sin Θc

2κ

)
(y−yr,i )

Determine nλ =
⌊

nE
4

⌋
.

for each edge Γe,e′ ∈ Γint

Compute max and min of |a|2κ

[
cos(φ− αe,e′ ) + cos(θk − αe,e′ )

]
, call them Λe,e′

min , Λe,e′
max .

Sample {Λe,e′
i : i = 1, ..., nλ} uniformly in the interval [Λe,e′

min , Λe,e′
max ].

Define the Lagrange multipliers approximations on Γe,e′ by:

λ
h|

Γe,e′ = span

{
e

Λ
e,e′
i (s−se,e′

r,i )
, 0 ≤ s ≤ h

}
end for
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Element Nomenclature

Notation

DGM Element: Q − nE − nλ

DEM Element: Q − nE − nλ+ ≡ [Q − nE − nλ] ∪ [Q1]

′Q′: Quadrilateral
nE : Number of Enrichment Functions
nλ: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

Name nE Θc nλ

DGM elements

Q − 4− 1 4 φ+
{mπ

2 : m = 0, ..., 3
}

1
Q − 8− 2 8 φ+

{mπ
4 : m = 0, ..., 7

}
2

Q − 12− 3 12 φ+
{mπ

6 : m = 0, ..., 11
}

3
Q − 16− 4 16 φ+

{mπ
8 : m = 0, ..., 15

}
4

DEM elements

Q − 5− 1+ 5 φ+
{ 2mπ

5 : m = 0, ..., 4
}

1
Q − 9− 2+ 9 φ+

{ 2mπ
9 : m = 0, ..., 8

}
2

Q − 13− 3+ 13 φ+
{ 2mπ

13 : m = 0, ..., 12
}

3
Q − 17− 4+ 17 φ+

{ 2mπ
17 : m = 0, ..., 16

}
4
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Illustration of the Sets Θc for the True DEM Elements

Q − 5 − 1+ Q − 9 − 2+

Q − 13 − 3+ Q − 17 − 4+
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Computational Complexities

Element Asymptotic Stencil width for (# dofs) × L2 convergence
# of dofs uniform n × n mesh (stencil width) rate (a posteriori)

Q1 nel 9 9nel 2
Q − 4− 1 2nel 7 14nel 2

Q2 3nel 21 63nel 3
Q − 8− 2 4nel 14 56nel 3

Q − 5− 1+ 3nel 21 63nel 2− 3

Q3 5nel 33 165nel 4
Q − 12− 3 6nel 21 126nel 4

Q − 9− 2+ 5nel 33 165nel 3− 4

Q4 7nel 45 315nel 5
Q − 16− 4 8nel 28 224nel 5

Q − 13− 3+ 7nel 45 315nel 4− 5

Q − 17− 4+ 9nel 57 513nel 4− 5

Figure 4: Q1 stencil Figure 5: Q − 4− 1 stencil
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Summary of Computational Properties

“COMPARABLES”

A priori in
computational cost:

• DGM with n LMs and Qn

• DEM with n LMs and Qn+1

A posteriori in
convergence rate:

• DGM with n LMs and Qn

• DEM with n LMs and Qn/Qn+1

Exponential enrichments⇒ integrations can be computed analytically.

LcE = 0⇒ convert volume integrals to boundary integrals:

a(vE , cE ) =
∫

Ω̃
(κ∇vE · ∇cE + a · ∇cE vE ) dΩ

=
∫

Γ̃
∇cE · nvE d Γ

Irina Kalashnikova∗ Ph.D. Candidate Institute for Computational & Mathematical Engineering (iCME) Stanford UniversityDEM for Multi-Scale Transport Problems 24/ 52



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for Constant-Coefficient Advection-Diffusion DEM for Variable-Coefficient Advection-Diffusion Extension of DEM to Unsteady, Non-Linear Problems SummaryEnrichment Bases Lagrange Multiplier Approximations Element Design Numerical Experiments

Homogeneous Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

a =
(

cosφ, sinφ
)
.

Dirichlet boundary conditions are specified on
Γ such that the exact solution to the BVP is
given by

cex (x;φ, ψ) =
e

1
2κ {[cosφ+cosψ](x−1)+[sinφ+sinψ](y−1)} − 1

e−
1

2κ [cosφ+cosψ+sinφ+sinψ] − 1

ψ ∈ [0, 2π) : some flow direction (not
necessarily aligned with φ).

Solution exhibits a sharp exponential
boundary layer in the advection direction φ,
whose gradient is a function of the Péclet
number.

Homogeneous problem⇒
pure DGM elements sufficient

Figure 6: φ = ψ = 0

Figure 7: φ = π/7,ψ = 0
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Non-trivial Test Case: Flow not Aligned with Advection
Direction (φ 6= ψ)

Set φ = π/7; vary ψ.
Can show that cex /∈ VE for any DGM elements and advection
directions tested here.

Table 1: Relative L2(Ω) errors, ≈ 1600 dofs, unstructured mesh, φ = π/7, Pe = 103: Galerkin

vs. DGM elts.

ψ/π Q1 Q − 4− 1 Q2 Q − 8− 2
0 1.45× 10−2 1.65× 10−3 5.92× 10−3 1.79× 10−3

1/4 1.52× 10−2 9.38× 10−4 6.06× 10−3 2.54× 10−4

1/2 1.51× 10−2 9.23× 10−4 5.97× 10−3 2.12× 10−4

ψ/π Q3 Q − 12− 3 Q4 Q − 16− 4
0 4.34× 10−3 1.10× 10−4 3.23× 10−3 2.30× 10−5

1/4 4.46× 10−3 1.23× 10−5 3.29× 10−3 8.82× 10−7

1/2 4.36× 10−3 1.11× 10−5 3.18× 10−3 1.59× 10−6
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Convergence Analysis & Results

Element
Rate # dofs

of to achieve
convergence 10−3 error

Q1 1.90 63,266
Q − 4− 1 1.99 14,320

Q2 2.38 24,300
Q − 8− 2 3.27 5400

Q3 3.48 12,500
Q − 12− 3 3.88 850

Q4 4.41 8600
Q − 16− 4 5.19 570

To achieve for this problem the relative error of 0.1% for Pe = 103:

Q − 4− 1 requires 4.4 times fewer dofs than Q1.
Q − 8− 2 requires 4.5 times fewer dofs than Q2.
Q − 12− 3 requires 14.7 times fewer dofs than Q3.
Q − 16− 4 requires 15.1 times fewer dofs than Q4.
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Solution Plots for Homogeneous BVP
Figure 8: φ = ψ = 0, Pe = 103, ≈ 1600 dofs

Q3

Q − 12 − 3

Figure 9: φ = π/7, ψ = 0, Pe = 105, ≈ 1600 dofs

Q3

Q − 12 − 3
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Double Ramp Problem on an L–Shaped Domain

-

6

Ω

c = 0

c = 0

c = 0

c = 0

c = 0

c = 0c = 0

aT =
(

1, 0
)

1 x

1

y

0.5

0

Figure 10: L-shaped domain for double
ramp problem

Homogeneous Dirichlet boundary
conditions are prescribed on all six
sides of L–shaped domain Ω.
Advection direction: φ = 0.
Source: f = 1.
Strong outflow boundary layer along
the line x = 1.
Two crosswind boundary layers
along y = 0 and y = 1.
A crosswind internal layer along
y = 0.5.
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Solutions Plots: Galerkin vs. DGM vs. DEM Elements

Figure 11: L–shaped double ramp problem solutions: Pe = 103, 7600 dofs

Q3 Q − 12 − 3 Q − 9 − 2+

No oscillations can be seen in the computed DGM and DEM
solutions.
Would expect: DEM elements to outperform DGM elements for
this inhomogeneous problem.
In fact: DGM elements experience some difficulty along the
y = 0.5 line, the location of the crosswind internal layer.
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Cross Sectional Solution Plots

Figure 12: Solution along the line x = 0.9 with 7600 dofs

Galerkin DGM DEM

Figure 13: Solution along the line y = 0.5 with 7600 dofs

Galerkin DGM DEM
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Relative Errors (Pe = 103, Uniform Mesh)

# elements Q3 Q − 12− 3 Q − 9− 2+

300 1.49× 10−1 1.11× 10−1 4.11× 10−2

1200 6.57× 10−2 5.00× 10−2 8.47× 10−3

4800 2.36× 10−2 1.02× 10−2 1.65× 10−3

10, 800 1.08× 10−2 4.54× 10−3 7.43× 10−4

# elements Q4 Q − 16− 4 Q − 13− 3+

300 9.58× 10−2 8.32× 10−2 2.80× 10−2

1200 3.78× 10−2 1.33× 10−2 4.71× 10−3

4800 1.03× 10−2 9.17× 10−3 8.24× 10−4

10, 800 3.70× 10−3 4.92× 10−4 9.75× 10−5

DEM elements outperform DGM elements.
Both DGM and DEM elements outperform Galerkin elements.
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Extension to Variable-Coefficient Problems
Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.
a(x) ≈ ae =constant inside each element Ωe as h→ 0:

{a(x) · ∇c − κ∆c = f (x) in Ω} ≈ ∪nel
e=1{a

e · ∇c − κ∆c = f (x) in Ωe}.

ae ≡
(
−yj − h

2
xj + h

2

)

Ωe

ae′ ≡
(
−yj − h

2
xj + 3h

2

)

Ωe′

xj xj + h xj + 2h

yj

yj + h

�6a(x) =
(
−y, x

)T

Enrichment in each element:

cE
e (x; θe

i ) = e
|ae|
2κ (cosφe+cos θe

i )(x−xe
r,i )e

|ae|
2κ (sinφe+sin θe

i )(y−ye
r,i ) ∈ VE

e
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Relation Between Local Enrichment and Governing
PDE

Given a(x) ∈ C1(Ωe), Taylor expand a(x) around an element’s midpoint
x̄e:

a(x) = a(x̄e) +∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2 in Ωe

Operator governing the PDE inside the element Ωe takes the form

a(x) ·∇c − κ∆c = Lec+ f (c) in Ωe

where

Lec ≡ a(x̄e) · ∇c − κ∆c

f (c) ≡
[
∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2] · ∇c

f (c) ≡
[
∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2] · ∇c

“Residual” advection equation acts as source-like term⇒ suggests true
DEM elements are in general more appropriate than pure DGM
elements for variable-coefficient problems.

Can we build a better pure DGM
element for variable-coefficient problems?
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where

Lec ≡ a(x̄e) · ∇c − κ∆c

f (c) ≡
[
∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2] · ∇c

“Residual” advection equation acts as source-like term⇒ suggests true
DEM elements are in general more appropriate than pure DGM
elements for variable-coefficient problems.

Can we build a better pure DGM
element for variable-coefficient problems?
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Additional “First Order” Enrichment Functions

Are we missing any free-space solutions to ae · ∇cE − κ∆cE = 0?

Yes! Polynomial free-space solutions to LcE
e,n = ae · ∇cE

e,n −∆cE
e,n = 0

(of any desired degree n) can be derived as well.

cE
e,1(x) = |ae × x|

cE
e,2(x) = |ae × x|2 + 2(ae · x)

cE
e,3(x) = |ae × x|3 + 6|ae × x|(ae · x)

...

cE
e,1(x) cE

e,2(x) cE
e,3(x)
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“Higher Order” Enrichment Functions

Linearize a(x) to second order, instead of to first order:

a(x) ≈ a(x̄e) +∇a|x=x̄e · (x− x̄e) in Ωe

Enrich with free-space solutions to

[Ax + b] · ∇cE − κ∆cE = 0 (2)

where A ≡ ∇a|x=x̄e , b ≡ (a(x̄e)−∇a|x=x̄e x̄e).

Solutions to (2) are given by:

cE (x) =

∫ vi ·x

0
exp

{
σiw2

2
+ (vi · b)w

}
dw

σi = eigenvalue of ∇a|x=x̄e

vi = eigenvector of ∇a|x=x̄e
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“Enrichment Function Bank”

Exponential Family

cE
e (x; θi ) = e

(
ae

1+|ae| cos θi
2κ

)
(x−xr,i )e

(
ae
2+|ae| sin θi

2κ

)
(y−yr,i )

Polynomial Family
cE

e,0(x) = 1
cE

e,1(x) = |ae × x|
cE

e,2(x) = |ae × x|2 + 2(ae · x)

cE
e,3(x) = |ae × x|3 + 6|ae × x|(ae · x)

...

“Higher Order” Enrichment
cE (x) =

∫ vi ·x
0 exp

{
σi w

2

2 + (vi · b)w
}

dw

VE
e
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Modification of the Lagrange Multiplier Field

�
�
�
�
�
�

@@R
ne,e′

s

q
q

s = 0

s = hΩe

Ωe′Γe,e′

αe,e′
�
�
�
��

��
Figure 14: Straight edge Γe,e′

oriented at angle αe,e′ ∈ [0, 2π)

Limit nλ to satisfy inf-sup:

Use


⌊

nexp

4

⌋
exponential LMs⌊

npol

4

⌋
polynomial LMs

LM approximations arising from exponential enrichments:

λh|Γe,e′ = span
{

eΛ
e,e′
i (s−se,e′

r,i )
, 0 ≤ s ≤ h, 1 ≤ i ≤ nexp

}
where Λe,e′

i ≡ |a|2κ

[
cos(φ− αe,e′) + cos(θi − αe,e′)

]
.

LM approximations arising from polynomial enrichments:

λh|Γe,e′ = span
{

sk , 0 ≤ s ≤ h, 0 ≤ k ≤ npol − 1
}
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New DGM Elements

Notation

New DGM Elements:
{

Q − (npol, nexp)− nλ

Q − (npol, nexp)∗ − nλ

′Q′: Quadrilateral
npol: Number of Polynomial Enrichment Functions
nexp: Number of Exponential Enrichment Functions
nλ: Number of Lagrange Multipliers per Edge
′∗′: Element Augmented by “Higher Order” Enrichment

Name nE Θc nλ

DGM elements

Q − (4, 5)− 2 9 φ+
{ 2mπ

5 : m = 0, ..., 4
}

2
Q − (4, 5)∗ − 2 10 φ+

{ 2mπ
5 : m = 0, ..., 4

}
2

Q − (4, 9)− 3 13 φ+
{ 2mπ

9 : m = 0, ..., 8
}

3
Q − (4, 9)∗ − 3 14 φ+

{ 2mπ
9 : m = 0, ..., 8

}
3

Polynomial enrichment fields of new DGM elements contain npol = 4
polynomial free-space solutions of degrees 0, 1, 2 and 3.
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Computational Complexities

Element Asymptotic Stencil width for (# dofs) × L2 convergence
# of dofs uniform n × n mesh (stencil width) rate (a posteriori)

Q1 nel 9 9nel 2
Q − 4− 1 2nel 7 14nel 2

Q2 3nel 21 63nel 3
Q − 8− 2 4nel 14 56nel 3

Q − (4, 5)− 2 4nel 14 63nel 3

Q − (4, 5)∗ − 2 4nel 14 63nel 3

Q − 5− 1+ 3nel 21 63nel 2− 3

Q3 5nel 33 165nel 4
Q − 12− 3 6nel 21 126nel 4

Q − (4, 9)− 3 6nel 21 126nel 4

Q − (4, 9)∗ − 3 6nel 21 126nel 4

Q − 9− 2+ 5nel 33 165nel 3− 4

Q4 7nel 45 315nel 5

Q − 16− 4 8nel 28 224nel 5

Q − 13− 3+ 7nel 45 315nel 4− 5

Q − 17− 4+ 9nel 57 513nel 4− 5
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Inhomogeneous Rotating Advection Problem on an
L–Shaped Domain

-

6

Ω

c = 0

c = 0

c = 0

c = 0

c = 0

c = 0c = 0

aT =
(

1− y , x
)
1 x

1

y

0.5

0

Figure 15: L-shaped domain and
rotating velocity field (curved lines
indicate streamlines)

Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L–shaped domain Ω.
Source: f = 1.
aT (x) =

(
1− y , x

)
.

Outflow boundary layer along the
line y = 1.
Second boundary layer that
terminates in the vicinity of the
re-entrant corner
(x , y) = (0.5,0.5).

Irina Kalashnikova∗ Ph.D. Candidate Institute for Computational & Mathematical Engineering (iCME) Stanford UniversityDEM for Multi-Scale Transport Problems 42/ 52



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for Constant-Coefficient Advection-Diffusion DEM for Variable-Coefficient Advection-Diffusion Extension of DEM to Unsteady, Non-Linear Problems SummaryEnrichment Bases Lagrange Multiplier Approximations Element Design Numerical Experiments

Solutions Plots for Pe = 103 with ≈ 3000 dofs

Q1 Stabilized Q1 Q2

Q − 5 − 1+ Q − 9 − 2+

* “Stabilized Q1” is upwind stabilized bilinear finite element proposed by Harari et al.
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Convergence Analysis & Results

Element
Rate # dofs

of to achieve
convergence 10−2 error

Q2 1.94 62, 721
Q − 5− 1+ 1.55 21, 834

Q3 2.67 33, 707
Q − 9− 2+ 2.37 7, 568

Q4 3.50 20, 796
Q − 13− 3+ 3.23 5, 935
Q − 17− 4+ 3.26 4, 802

* “Stabilized Q1” is upwind stabilized bilinear finite element proposed by Harari et al.

To achieve for this problem the relative error of 1% for Pe = 103:
Q − 5− 1+ requires 2.9 times fewer dofs than Q2.
Q − 9− 2+ requires 4.5 times fewer dofs than Q3.
Q − 13− 3+ requires 3.5 times fewer dofs than Q4.
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Lid-Driven Cavity Flow Problem

-

6

c = 0

1

c = 1

∂c
∂n = 0

10

y

x∂c
∂n = 0

Ω

Ω = (0,1)× (0,1), f = 0.
a(x) computed numerically by
solving the incompressible
Navier-Stokes equations for
lid-driven cavity flow problem
(stationary sides and bottom,
tangential movement of top).
Advection field reconstructed using
interpolation with bilinear shape
functions φe

i :

ae(ξ) =

# nodes of Ωe∑
i=1

ae
i φ

e
i (ξ)

c(x) represents temperature in
cavity.
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Convergence Analysis & Results (κ = 0.01, Pe ≈ 260)

New pure DGM elements without
“higher order” enrichment outperform
Galerkin comparables.

Further improvement in computation by
adding “higher order” enrichment.

Q2

Q − (4, 5) − 2
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DEM for the Viscous Burgers Equation

Non-linear unsteady version of advection-diffusion equation =
viscous Burgers equation:

ut + uux − κuxx = 0

Semi-discrete form of PDE (with semi-implicit Euler) at time n:

un+1−un

∆t + unun+1
x − κun+1

xx = 0

Enrichment functions inside each element at time step n are the
free-space solutions to steady analog of the equation above:

VE,n
e = span{un(x) : un−1(x̄e)un

x − κun
xx = 0, x ∈ Ωe}

where

VE,n
e = enrichment field inside element Ωe at time step n

x̄e ≡ midpoint of element Ωe
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Summary

Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs

for advection-diffusion in a high Péclet regime.

Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, unsteady, 3D).

Future work: DEM for incompressible Navier-Stokes.
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